{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Warning" -1 7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 1 3 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 12 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple P lot" -1 13 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }{TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 16 "Steiners Problem" }}{PARA 0 "" 0 " " {TEXT -1 27 "NIKLAS SK\305NBERG 720713-8616" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "with(linalg ); with(plots);" }}{PARA 7 "" 1 "" {TEXT -1 80 "Warning, the protected names norm and trace have been redefined and unprotected\n" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#7^r%.BlockDiagonalG%,GramSchmidtG%,JordanBlo ckG%)LUdecompG%)QRdecompG%*WronskianG%'addcolG%'addrowG%$adjG%(adjoint G%&angleG%(augmentG%(backsubG%%bandG%&basisG%'bezoutG%,blockmatrixG%(c harmatG%)charpolyG%)choleskyG%$colG%'coldimG%)colspaceG%(colspanG%*com panionG%'concatG%%condG%)copyintoG%*crossprodG%%curlG%)definiteG%(delc olsG%(delrowsG%$detG%%diagG%(divergeG%(dotprodG%*eigenvalsG%,eigenvalu esG%-eigenvectorsG%+eigenvectsG%,entermatrixG%&equalG%,exponentialG%'e xtendG%,ffgausselimG%*fibonacciG%+forwardsubG%*frobeniusG%*gausselimG% *gaussjordG%(geneqnsG%*genmatrixG%%gradG%)hadamardG%(hermiteG%(hessian G%(hilbertG%+htransposeG%)ihermiteG%*indexfuncG%*innerprodG%)intbasisG %(inverseG%'ismithG%*issimilarG%'iszeroG%)jacobianG%'jordanG%'kernelG% *laplacianG%*leastsqrsG%)linsolveG%'mataddG%'matrixG%&minorG%(minpolyG %'mulcolG%'mulrowG%)multiplyG%%normG%*normalizeG%*nullspaceG%'orthogG% *permanentG%&pivotG%*potentialG%+randmatrixG%+randvectorG%%rankG%(ratf ormG%$rowG%'rowdimG%)rowspaceG%(rowspanG%%rrefG%*scalarmulG%-singularv alsG%&smithG%,stackmatrixG%*submatrixG%*subvectorG%)sumbasisG%(swapcol G%(swaprowG%*sylvesterG%)toeplitzG%&traceG%*transposeG%,vandermondeG%* vecpotentG%(vectdimG%'vectorG%*wronskianG" }}{PARA 7 "" 1 "" {TEXT -1 50 "Warning, the name changecoords has been redefined\n" }}{PARA 12 " " 1 "" {XPPMATH 20 "6#7W%(animateG%*animate3dG%-animatecurveG%&arrowG% -changecoordsG%,complexplotG%.complexplot3dG%*conformalG%,conformal3dG %,contourplotG%.contourplot3dG%*coordplotG%,coordplot3dG%-cylinderplot G%,densityplotG%(displayG%*display3dG%*fieldplotG%,fieldplot3dG%)gradp lotG%+gradplot3dG%-implicitplotG%/implicitplot3dG%(inequalG%-listcontp lotG%/listcontplot3dG%0listdensityplotG%)listplotG%+listplot3dG%+loglo gplotG%(logplotG%+matrixplotG%(odeplotG%'paretoG%*pointplotG%,pointplo t3dG%*polarplotG%,polygonplotG%.polygonplot3dG%4polyhedra_supportedG%. polyhedraplotG%'replotG%*rootlocusG%,semilogplotG%+setoptionsG%-setopt ions3dG%+spacecurveG%1sparsematrixplotG%+sphereplotG%)surfdataG%)textp lotG%+textplot3dG%)tubeplotG" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "a:=15; b:=1+2*(-1)^(8+6);c:=13+6+((1+6)/2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"aG\"#:" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"bG\" \"$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"cG#\"#X\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 72 "AM:=sqrt((x+a)^2+y^2); BM:=sqrt((x- a)^2+y^2); CM:=sqrt((x-b)^2+(y-c)^2);" }{TEXT -1 2 " " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#AMG*$-%%sqrtG6#,**$)%\"xG\"\"#\"\"\"F.*&\"#IF.F ,F.F.\"$D#F.*$)%\"yGF-F.F.F." }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#BMG *$-%%sqrtG6#,**$)%\"xG\"\"#\"\"\"F.*&\"#IF.F,F.!\"\"\"$D#F.*$)%\"yGF-F .F.F." }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#CMG,$*$-%%sqrtG6#,,*$)%\"x G\"\"#\"\"\"\"\"%*&\"#CF/F-F/!\"\"\"%h?F/*&F0F/)%\"yGF.F/F/*&\"$!=F/F7 F/F3F/#F/F." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "f:=AM+BM+CM; " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG,(*$-%%sqrtG6#,**$)%\"xG\"\" #\"\"\"F/*&\"#IF/F-F/F/\"$D#F/*$)%\"yGF.F/F/F/F/*$-F(6#,*F+F/*&F1F/F-F /!\"\"F2F/F3F/F/F/*&#F/F.F/-F(6#,,F+\"\"%*&\"#CF/F-F/F;\"%h?F/*&FAF/F4 F/F/*&\"$!=F/F5F/F;F/F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 " fx:=diff(f,x);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#fxG,(*&,**$)%\"xG \"\"#\"\"\"F,*&\"#IF,F*F,F,\"$D#F,*$)%\"yGF+F,F,#!\"\"F+,&F*F+F.F,F,#F ,F+*(F6F,,*F(F,*&F.F,F*F,F4F/F,F0F,F3,&F*F+F.F4F,F,*(#F,\"\"%F,,,F(F=* &\"#CF,F*F,F4\"%h?F,*&F=F,F1F,F,*&\"$!=F,F2F,F4F3,&F*\"\")F@F4F,F," }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "fy:=diff(f,y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#fyG,(*&,**$)%\"xG\"\"#\"\"\"F,*&\"#IF,F*F,F, \"$D#F,*$)%\"yGF+F,F,#!\"\"F+F2F,F,*&,*F(F,*&F.F,F*F,F4F/F,F0F,F3F2F,F ,*(#F,\"\"%F,,,F(F:*&\"#CF,F*F,F4\"%h?F,*&F:F,F1F,F,*&\"$!=F,F2F,F4F3, &F2\"\")FAF4F,F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "fxx:=di ff(fx,x);" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%$fxxG,.*&,**$)%\"xG\"\" #\"\"\"F,*&\"#IF,F*F,F,\"$D#F,*$)%\"yGF+F,F,#!\"$F+,&F*F+F.F,F+#!\"\" \"\"%*&F,F,*$-%%sqrtG6#F'F,F7F,*&#F,F8F,*&,*F(F,*&F.F,F*F,F7F/F,F0F,F3 ,&F*F+F.F7F+F,F7*&F,F,*$-F<6#FAF,F7F,*&#F,\"\")F,*&,,F(F8*&\"#CF,F*F,F 7\"%h?F,*&F8F,F1F,F,*&\"$!=F,F2F,F7F3,&F*FJFNF7F+F,F7*&F+F,FL#F7F+F," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "fyy:=diff(fy,y);" }} {PARA 12 "" 1 "" {XPPMATH 20 "6#>%$fyyG,.*&,**$)%\"xG\"\"#\"\"\"F,*&\" #IF,F*F,F,\"$D#F,*$)%\"yGF+F,F,#!\"$F+F2F+!\"\"*&F,F,*$-%%sqrtG6#F'F,F 5F,*&,*F(F,*&F.F,F*F,F5F/F,F0F,F3F2F+F5*&F,F,*$-F96#F " 0 "" {MPLTEXT 1 0 16 "fxy:=diff(fx,y);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$fxyG,(*(,**$)% \"xG\"\"#\"\"\"F,*&\"#IF,F*F,F,\"$D#F,*$)%\"yGF+F,F,#!\"$F+,&F*F+F.F,F ,F2F,#!\"\"F+*&#F,F+F,*(,*F(F,*&F.F,F*F,F7F/F,F0F,F3,&F*F+F.F7F,F2F,F, F7*&#F,\"\")F,*(,,F(\"\"%*&\"#CF,F*F,F7\"%h?F,*&FCF,F1F,F,*&\"$!=F,F2F ,F7F3,&F*F@FEF7F,,&F2F@FIF7F,F,F7" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "svar:=solve(\{fx,fy\},\{x,y\});" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%%svarG<$/%\"xG,&#!$5#\"#P\"\"\"*&#\"$5(F+F,)-%'RootOf G6$,(\"%hZF,*&\"&-d\"F,)%#_ZG\"\"#F,!\"\"*&\"%T)*F,)F9\"\"%F,F,$\"+*H, ,Q'!#5F:F,F,/%\"yG,&*$F0F,#!$f%\"$[\"#\"%\\9FIF," }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 49 "u:=evalf(rhs(svar[1])); v:=evalf(rhs(svar[2] )); " }{TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 124 " Koordinaterna ti ll den s\366kta extrempunkten som ger den totalt kortaste v\344gen AM+ BM+CM!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uG$\"+'o;a8#!\"*" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"vG$\"+%*R6G&)!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "A:=eval(fxx,[x=u,y=v]); B:=eval(fxy ,[x=u,y=v]); C:=eval(fyy,[x=u,y=v]);" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%\"AG$\"+2)[J,\"!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"BG$\"+CM (Qf%!#7" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"CG$\"+^Sh:()!#6" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 48 "Ma:=matrix(2,2,[A,B,B,C]); E gv:=eigenvalues(Ma);" }}{PARA 11 "" 0 "" {TEXT -1 27 "Egenv\344rden, b \345da positiva!!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#MaG-%'matrixG6 #7$7$$\"+2)[J,\"!#5$\"+CM(Qf%!#77$F-$\"+^Sh:()!#6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$EgvG6$$\"+'zC'z&)!#6$\"+KxuE5!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "fM:=eval(f,[x=u,y=v]); " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "fA:=eval(f,[x=-a,y=0]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "fB:=eval(f,[x=a,y=0]);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "fC:=eval(f,[x=b,y=c]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#f MG$\"+u$\\t&[!\")" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#fAG,&*$-%%sqrt G6#\"$+*\"\"\"F+*&#F+\"\"#F+-F(6#\"%@LF+F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#fBG,&*$-%%sqrtG6#\"$+*\"\"\"F+*&#F+\"\"#F+-F(6#\"%,E F+F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#fCG,&*&-%%sqrtG6#\"%@L\"\" \"-F(6#\"\"%F+#F+F.*(F/F+-F(6#\"%,EF+F,F+F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "Av:=vector([-a,0]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#AvG-%'vectorG6#7$!#:\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "Bv:=vector([a,0]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6 #>%#BvG-%'vectorG6#7$\"#:\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "Cv:=vector([b,c]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#CvG-% 'vectorG6#7$\"\"$#\"#X\"\"#" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 18 "Mv:=vector([u,v]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#MvG-%'vec torG6#7$$\"+'o;a8#!\"*$\"+%*R6G&)F+" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 65 "MA:=normalize(Av-Mv); MB:=normalize(Bv-Mv); MC:=norma lize(Cv-Mv);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#MAG-%'vectorG6#7$$! +^6`_*)!#5$!++#zbX%F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#MBG-%'vect orG6#7$$\"+^.\"\\L)!#5$!+1)H`_&F+" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#MCG-%'vectorG6#7$$\"+yz?wh!#6$\"+1!44)**!#5" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 62 "sk1:=dotprod(MA,MB); sk2:=dotprod(MA,MC); sk3:=d otprod(MB,MC);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 128 "MMA:=sqrt(.16079 19768^2+(-.9869883182)^2); MMC:=sqrt(.9993693241^2+.3550991849e-1^2); \+ MMB:=sqrt(.8392080101^2+(-.5438105510)^2);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$sk1G$!+++++]!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %$sk2G$!+********\\!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$sk3G$!+/+ ++]!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$MMAG$\"+++++5!\"*" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#>%$MMCG$\"+++++5!\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%$MMBG$\"+)*********!#5" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 89 "vink1:=arccos(sk1/(MMA*MMB)); vink2:=arccos(sk2/(MM A*MMC)); vink3:=arccos(sk3/(MMB*MMC));" }{TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 150 " \+ Vinklarna mellan vektorer na. totala summan=2*pi, ok!" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&vink 1G$\"+.^R%4#!\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&vink2G$\"+-^R%4 #!\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&vink3G$\"+.^R%4#!\"*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 71 "list1:=[[u,v],[-a,0],[a,0],[ b,c],[u,v],[b,c],[-a,0],[b,c],[u,v],[a,0]];" }}{PARA 12 "" 1 "" {XPPMATH 20 "6#>%&list1G7,7$$\"+'o;a8#!\"*$\"+%*R6G&)F)7$!#:\"\"!7$\"# :F.7$\"\"$#\"#X\"\"#F&F1F,F1F&F/" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "plot(list1);" }}{PARA 13 "" 1 "" {GLPLOT2D 493 413 413 {PLOTDATA 2 "6%-%'CURVESG6$7,7$$\"37+++'o;a8#!#<$\"3#******R*R6G&) F*7$$!#:\"\"!$F0F07$$\"#:F0F17$$\"\"$F0$\"3+++++++]A!#;F'F5F-F5F'F2-%' COLOURG6&%$RGBG$\"#5!\"\"F1F1-%+AXESLABELSG6$Q!6\"FE-%%VIEWG6$%(DEFAUL TGFJ" 1 2 0 1 10 0 2 9 1 1 2 1.000000 45.000000 45.000000 0 0 "Curve 1 " }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "plot3d(f,x=-(a+3)..(a+ 3),y=-3..(c+3));" }}{PARA 13 "" 1 "" {GLPLOT3D 400 300 300 {PLOTDATA 3 "6$-%%GRIDG6%;$!#=\"\"!$\"#=F);$!\"$F)$\"0++++++b#!#8X,%)anythingG6 \"6\"[gl'!%\"!!#\\bm\":\":40519A6B4458EC8240512B960BB15E084050D3AF5C09 BD8740509B3EC4F7002E405082AB7F1BF220405081DE31A7FFFD405090BC5FA2FD4C40 50AA6B4106DA7C4050CC660B0616374050F562FCF7C3A4405124B7A1072CA140515A0C D341B9DA405195393FA864FA4051D62DDD71394040521CEB06B75CC640526979D219B9 7E4052BBE7973871204053144296FF3F1140537297483642FB4053D6EE10CD76AA4054 41495C2C0E074054B1A41419C125405527F08AA9C9544055A417E31BA8F4405625FA00 83E6D34050C6464324F2864050448F4469CA9A404FB0B1C40F2310404F3AAD28D647C4 404F2A036B008A5A404F47378EA981EA404F79D0CDC09F60404FBAB0516633D2405003 BE03ECCAB640502FACDBF6C5B440506101357E3A74405097B8DBF383C64050D3E2AF05 D30D40511597153F971440515CF3D08BF4A34051AA192BF684F94051FD27A6BD5E8440 52563DBF4780234052B575BF358DD840531AE38E3BC5E740538692A86DB1744053F884 6165211E405470AEA046E0E14054EEFB390F75F140557347F75479E640501734EB5291 C8404F0F138A4C7B0A404DF7D5D2721A60404D78EE31346D35404DA2992B6D4146404D D512ED01AEF4404E10981A519035404E5566C4D90E8E404EA3BF7365DE42404EFBE628 090612404F5E234760F8E2404FCAC43E5857FC4050210DDEDD4FB740506240AF9FF52C 4050A92843E0E2FA4050F5F3304AB1E0405148CF68922AC34051A1E83DDB2DE4405201 63F26A87F0405267610C0EB2254052D3F3A3D4AFFD4053472300741B2C4053C0E7CB62 E8844054412B2301F2354054C7C6AFA32111404F312EFFFD9110404E2582853711EE40 4D451A8C4A0B25404CC75EACE5CC50404CAF411E00196C404CC5439EE7D352404CF0EB E3184C08404D2B19FC9BA8CE404D71740B20DF91404DC3224A6391BB404E1FE38DB23B 5A404E87BDA1A3C6FE404EFADDE97FE26C404F798B0FF70D684050020E8C6388044050 4D7BC7AFDC4840509F41F44315134050F7959B4221EC405156A7750071884051BCA068 7CF7984052299D75FB17F640529DABFF352AA4405318C6EEF760A040539AD5319C6398 405423A9C00F5DA2404E7F28670A5BE1404D910D02BE1B0D404CD157CBE32502404C51 1901920F31404C111DB6C094A2404C01340F548FEE404C11232450011A404C37321862 7488404C6E565F6824E1404CB3FFD8B15146404D06E38639AB24404D6665E5E6945840 4DD2521E09AF72404E4AB4C591A8D0404ECFC72C64F5E4404F61E2018A50E0405000B9 5A0C9C0E405057788E9960844050B56A240B545B40511AC31125500B405187AB5A7FA4 D44051FC381D29DB4340527866E0ED69254052FC1AFD4F48794053871D89EC7FD2404D F7F85EC8FBD2404D1CC52C939E14404C69FBF05AEED7404BE65F9CA260F0404B9258A6 F75B61404B67D03D7DEBAB404B5E5B07E98749404B6EBE16C6387B404B93E7C2F1D4F8 404BCA9849822A93404C10D2803459DE404C656DE665B846404CC7D01EFE46EE404D37 C1EA0CBD08404DB55479623272404E40CF6B89215D404EDAA262FFF028404F8356F38F C91A40501DC078645877405081D6368E52F34050EE250F2B9C34405162CE209118C640 51DFD385F1EA5E40526513E1DDFADE4052F24A2CC8B48F404D89E8D99CA224404CB972 C58899F2404C0BFF668D2F46404B84DC769B5D80404B2451F2DFCF00404AE798A569B2 F6404ACA2A05ACC868404AC74A60054D8C404ADAF2DC604AF4404B021503C79BBC404B 3A87C519BF3B404B82DBDC0B6EF2404BDA32F1F03759404C4020973640AE404CB4942D 946ECE404D37C886784B51404DCA35A21FB117404E6C813DC5733C404F1F6B7EB87B88 404FE3B642836B4240505D03D91812CE4050D165BAE6E7CC40514F0C296F2F214051D5 D04CAFA17040526558C5D5FC0A404D2D50DFF1FED0404C62C8F2623E1C404BB7465055 3077404B2CAA50FC529A404AC32C4DF1D266404A79572080405B404A4C89FA4EB0CC40 4A39AC59DF1DAC404A3DC102780FE6404A563829D2A3D8404A810C60D8D194404ABCC2 06494296404B085B99BC6DF2404B634CA5F67FC6404BCD6EC22860CA404C46F8945C05 E2404CD074B3BFD70C404D6AB4FC386823404E16BE3A0FA2ED404ED5A8A6CF652B404F A8747F17671A405047EBB57B542A4050C606E78A673E40514E5F15DD0AA74051E07C44 89D0AB404CDEEF13223752404C1780A96DF9C6404B6C3C96F10E04404ADE55962B05D6 404A6DF6EF8A6DB0404A1A44223386904049E192D11EBBBC4049C1C45BC718C84049B8 9D97B1FEB24049C407F780AE814049E238640A8234404A11C210F84FE2404A519DD67F 56EF404AA12CC88D8E26404B0039EF02C0C7404B6EFC5BCA1B8C404BEE1860E1E74340 4C7E9BFB3938C2404D21EFA74A812C404DD9B2F592BFF1404EA77E692311FD404F8C8E 28C531A0405044B5024AADD34050CED61A4E3E6040516400AB663F7E404C9D653E5F94 07404BD757DDF70E62404B2B71D2D8F6C3404A9A88BD35F992404A24BD69FC1A444049 C97C2A7C90A44049879AAED799F040495D893F7ADD0240494988EABC8A9F404949DB38 58CA4D40495CE6506DC7BE4049814E0273BE384049B604FCD2C8EB4049FA5A2F1193C3 404A4E05B99D0811404AB1378DADC6AA404B24A7D94F5434404BA9A5C42C041C404C42 1AC3835CC2404CF07022F158DD404DB73EDEDBF7E4404E98BE31CD1FB2404F96108913 30B44050576172E2CDA04050F06770CDAD4A404C68307090C6B6404BA27049DD045340 4AF57AEE9958A7404A61F16AF3BEBA4049E7EB07E5CD77404986F5BC471F1640493E27 BBC2DCD140490C3DB31FA4EB4048EFBED11359A44048E720393A7A524048F0E3F1235A 4E40490BB2333DD8404049366E51E6294140497049B782307A4049B8D85052D452404A 102A00F2D21A404A76EC7DF5CEAE404AEE9683EB5ABC404B79956169B6AC404C1B6182 F8375B404CD83C1C3EE44B404DB445E67D9C75404EB1F54A7DF44B404FD0C655AF4BA0 405086A1C3CF0D12404C3F3630D34024404B7910D588A0D8404ACAE352811008404A35 31C92EE1914049B80B392114DD40495309C820780E4049055ECE67817C4048CDE840C0 E2304048AB4B83FE9A1640489C119341C65040489EC1709BCE444048B1F77C0132D440 48D479FEF565664049054CC4E3C179404943C71A74581E40498FB16CE17A224049E972 74DCCCB5404A525743E29113404ACD0243EDCFB8404B5DFB3662963B404C0C06FB3583 37404CDF2EC8244175404DDD3B028053D9404F0587F714837A40502894E643F230404C 228EBEBE56C6404B5B88A4AAFF22404AAC22D56B2D54404A14D5768ABC68404995A915 2A54E740492E36AC20ACB94048DDB1DA6D9D8F4048A2FB611AAB2240487CB8AE91B602 4048696CF6DA1F31404867910431AB4C404875A82827AA1E404892521E09AF724048BC 5B156286F64048F2CCA546F97440493504B46DBE68404982DBDEFA28954049DCEECA61 A721404A4533DD0387B5404AC0305047C64D404B572BAE5F53D9404C1A00FAED689A40 4D1896E8714C6F404E51E716281598404FB4B8CB31D5F2404C126B8393BFC6404B4A20 408E16D4404A99960176B9B1404A01485FF2CFA64049813BFC551724404918FE415BBD 9B4048C7B0BDAB6E6C40488C1D992DDA36404864D1144ED7D540485033CDA719684048 4CA2800AA0CF40485881678F0FF44048724AEDF44EDB4048989A60A81D1F4048CA3455 C6EBDA4049060F7286580540494B627E9E1777404999C2F24A97B94049F1737869DFD2 404A544E3E821B00404AC907B0B31B96404B67C19B22AC28404C67B394B56B00404DC5 B56770F7DA404F4A38F4B502E2404C0F0DA9C76B78404B4512B856B580404A93786BAB 86794049FACFB1534FA740497B1C55A57EB8404913D48D14A5154048C3F14EACD52640 488A0AF0FC11884048647AFCBC4F524048517C9265C88840484F4713252FFE40485C21 6ADDCAFC4048766E51E6294140489CB2DCA4F61A4048CD98ED24E44A404907EEEEA77B 2240494AA5F13B9A93404994CEE9463D474049E59793F4D083404A3C475078690C404A 983C1C3EE44B404AF8E7CA5DD8A0404BFDCD809308FE404D967F7BED30B6404F329D1A 719C44404C18C9FBB696AE404B4C8D8DC37046404A99E18D27E1EB404A01859A281892 404983802A7B74D140491F1DCCC7BBB64048D30D9D03DA9F40489D90AAA4A16240487C ADC0A598B940486E5DEFE995E9404870AC897AE5F9404881CAA62BDA0D4048A019361A 5E974048CA2D52779A534048FED26184502640493D0DABC046B7404984288F04E1BF40 49D3CC63488B24404A2C4F4D0A703B404A8F9D94D744C9404B047BE86FB6B6404BA31A 52A48B50404CA2BCADB09066404E00452E916664404F842E7951F0A6404C301D828547 F4404B60B969F546A0404AACC4D216FBC6404A1558C1E2584F40499A8225D71A644049 3B40740977774048F5BE55E1FAA84048C7A9B127081C4048AE8977CB105B4048A7FC80 F746B34048B1DDB1E54D3D4048CA53E1717A964048EFD6695406A84049212E234C053C 40495D7908F68B294049A436C30F08C54049F567B8DB60DD404A51D19249CE38404ABB 92039E5326404B3752488FD081404BCE79ECA0763E404C90FFCB5E274A404D8EE26FB6 6350404EC72FA73731B54050145FD2AFBDBC404C55DF6CCA6A5C404B81D2696AF52440 4ACBF6023F2E56404A361074DFFBFA4049C039A75662E6404968D7E0ABCDCC40492D1F C0E8689A404909C73D60A75A4048FB9796AD86DA4048FFBE9A50AD04404913EAF671E8 F04049364BED28D56640496587ABBD26684049A0B3B14A6BB54049E755D3E96E48404A 397326EACAA0404A97B389DF1BEA404B03A3DEB0E1BB404B8021CAE5F2D0404C11EA2A F1AA81404CBFF05C74F979404D926597925E02404E8F3440BF9461404FB5D5407D64F6 40507FBA50B33945404C8BB1637F253A404BB063E5A9D521404AF734EBF172B9404A63 57CE28BB8C4049F4F697653A334049A928267F019E40497B3FAF8EA7B240496656A263 608640496636B0B755464049779DCED9A5AA4049982C917B6E944049C63D6CE8CA5440 4A00C12FA17A2D404A472969D2EA71404A996230230966404AF7DB2D6C2CFA404B63A0 0341EB66404BDE7E7CA00169404C6B31D0471D09404D0D7684D93200404DC9C85C633A 08404EA479CE9C836D404FA02B23EB8FDA40505E3DB485548B4050FB09192B3E89404C D5066E914434404BEDE8C3D3D82E404B2E4B16E7218B404A9CD86451EB30404A39DEAF 825CBD4049FF2A2FBC97604049E430320400804049E1946F3656B44049F222C3BCC76B 404A127956E1FBC1404A407BEF8E2EC8404A7AEA476F34C4404AC1202C770746404B12 F484779287404B70AD2CA4C288404BDB00E3D979DC404C5321F022292E404CDACADDEF 96B0404D7441D43C4E44404E223F19388F66404EE79E55265792404FC6CEA6D420EF40 5060908AA2FEBE4050EB24A7E6E8B64051823075ED8041404D39A7B64D09E0404C3ECD 0EE0E5B9404B717151A59E36404AE2906356057A404A92E1AC2B5238404A721CA00FDE 5A404A6FF12AD2CB1C404A828FA7110EDA404AA4D88B94F086404AD42AA774C5BA404B 0F3101B8EFDE404B5551BF12CE6E404BA66BA93EAF2A404C02B983312E0A404C6AC838 606761404CDF76536D085A404D61F665568063404DF3CE11FDC1F5404E96C9E2671152 404F4CDCBB75232E40500BF22AB314E940507CAB180B7BE34050F8F4C4061C6E405180 AFDC5077DD40521342CD9D8F64404DCB5B61437E26404CB25593CDC24E404BC3B69A05 2C62404B36D5F528B340404B0E95909D0AB8404B13673305CE61404B2CC1B5B33DEC40 4B537897415752404B85294F909052404BC0F9A6DEFAEE404C06AF4A6CE664404C5664 444B57D8404CB06CCBB6CFE7404D154F40687CAB404D85C34A9B04C5404E02B2FB7D81 5F404E8D3A4D0FD867404F26A15EFA88EE404FD04D8DF96E88405045D315CBDE464050 ACF63201091B40511E05A1C3D8CC405199358E57257040521E6B49C79D2A4052AD3DB2 A2E7E9404EAA813601379C404D7D6CF129719D404C57A24CF22ED7404BC9532AFCB6A4 404BE2B12AA42411404C03EEF8C39C97404C2D420CC51074404C5EE4DB1DD219404C99 19822A43AF404CDC2CF0E6DAA8404D287A7D750A85404D7E6FD0B8C5A4404DDE90F071 F085404E497C04E34095404EBFEC35DB40D6404F42BAA4DE85D7404FD2DC2B97F9CC40 5038AD2127B46740508FA2C6FA62054050EED0B5AE672C405156A4CECEDC344051C76A EB1B835A405241408E6ADEFD4052C40DD0ED4C2940534F85A1416437404FECC362F2E4 5E404EDB61D049D708404DF444B8CF1EE6404D6ECBB9974F8C404D4DE3A5E0E086404D 5A0BCC725330404D7ACACBBB00DA404DA9057B0DEEEB404DE26B3BE27BE4404E2632DB 2F05E9404E74301BF9BBA6404ECC8568BF1B31404F2F85F81C83D8404F9DA91C53D352 40500BC1E4BDCC6D40504EE1D0E42B204050989482D6D5324050E93F4AC73F18405141 46A1859D7B4051A10675D4AD87405208C94D6073C2405278BF66D92AD04052F0F779CE 11954053715AAAA002CA4053F9ACADD698B94050BDA77EE370BE405047D1C93B354F40 4FD12CB690DD60404F50F61B4137F6404F0FCCB5617F72404EFD82FBC34432404F09E8 9F2DF928404F2B5148D42834404F5CC26857BFCB404F9BBEBA11B15E404FE71059DE0C 4640501F1938E317C340505083DF9DB93B405087DA5F9C13A24050C54535DB448B4051 08FC35FC817A405153410B3A68184051A459E95E910A4051FC8BD7A448BD40525C1479 6E52D84052C323A4091B5E405331D5694F93D14053A82D6F6C9563405426145F77B49A 4054AB57E2517DCD-%+AXESLABELSG6%%\"xG%\"yGQ!F5" 1 2 0 1 10 0 2 1 1 1 2 1.000000 91.000000 -48.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "24 1" 1 }{VIEWOPTS 0 0 0 1 1 1803 1 1 0 1 }{PAGENUMBERS 0 1 2 33 1 1 }