010419 / Åke Persson/

Polyvalued vs Probabilistic Logic

Under construction


Name Probabilistic notation Polyvalued notation
the product rule P(AB|C) = P(A|C) * P(B|AC) (p=>(q&r)) (p=>q) * ((p&q)=>r)
the sum rule P(A+B|C) = P(A|C) + P(B|C) + P(AB|C) (p=>(qvr)) (p=>q) + (p=>r) - (p=>(q&r))
Bayes' theorem P(A|BC) = P(A|C) * P(B|AC) / P(B|C) ((p&q)=>r) (p=>r) * ((p&r)=>q) / (p=>q)


Proof of the product rule:

(p=>(q&r)) (p=>q) * ((p&q)=>r)     |-
|-     (p&q&r) / p ((p&q)/p) * ((p&q&r)/(p&q))
|-     (p&q&r)*p*(p&q) (p&q)*(p&q&r)*p     #

Proof of the sum rule:

(p=>(qvr)) (p=>q) + (p=>r) - (p=>(q&r))     |-
|-     (p&(qvr))/p (p&q)/p + (p&r)/p - (p&q&r)/p
|-     (p&(qvr))/p ((p&q) + (p&r) - (p&q&r))/p
|-     ((p&q&r) + (p&q&~r) + (p&~q&r))/p ((p&q) + (p&r) - (p&q&r))/p
|-     ((p&q&r) + (p&q&~r) + (p&~q&r))/p ((p&q&r) + (p&q&~r) + (p&r) - (p&q&r))/p
|-     ((p&q&r) + (p&q&~r) + (p&~q&r))/p ((p&q&r) + (p&q&~r) + (p&q&r) + (p&~q&r) - (p&q&r))/p
|-     ((p&q&r) + (p&q&~r) + (p&~q&r))/p ((p&q&r) + (p&q&~r) + (p&~q&r))/p     #

Proof of Bayes' theorem:

((p&q)=>r) (p=>r) * ((p&r)=>q) / (p=>q)     |-
|-     (p&q&r) / (p&q) ((p&r)/p) * ((p&q&r)/(p&r)) / ((p&q)/p)
|-     (p&q&r)*p*(p&r)*(p&q) (p&r)*(p&q&r)*p*(p&q)     #