Elements
a ("p and q are simultaneous satisfied") | ; d--1 |
b ("p and not-q are simultaneous satisfied") | ; d--2 |
c ("not-p and q are simultaneous satisfied") | ; d--3 |
d ("not-p and not-q are simultaneous satisfied") | ; d--4 |
| | |
e ("p, q and r are simultaneous satisfied") | ; d--132 |
f ("p, not-q and r are simultaneous satisfied") | ; d--133 |
g ("not-p, q and r are simultaneous satisfied") | ; d--134 |
h ("not-p, not-q and r are simultaneous satisfied") | ; d--135 |
i ("p, q and not-r are simultaneous satisfied") | ; d--136 |
j ("p, not-q and not-r are simultaneous satisfied") | ; d--137 |
k ("not-p, q and not-r are simultaneous satisfied") | ; d--138 |
l ("not-p, not-q and not-r are simultaneous satisfied") | ; d--139 |
Elemental formCommutativesAssosiativesDistributives
(p&(qvr)) ((p&r)v(p&r)) | ; t--174 |
(pv(q&r)) ((pvq)&(pvr)) | ; t--173 |
Connective normal form
1 p + ~p | ; a--27 |
| | |
p (p&q) + (p&~q) | ; t--35 |
q (p&q) + (~p&q) | ; t--36 |
~p (~p&q) + (~p&~q) | ; t--38 |
~q (p&~q) + (~p&~q) | ; t--39 |
| | |
(pvq) (p&q) + (p&~q) + (~p&q) | ; t--44 |
(p -> q) (p&q) + (~p&q) + (~p&~q) | ; t--42 |
(p => q) (p&q) / ((p&q) + (p&~q)) | ; t--45 |
(q -> p) (p&q) + (p&~q) + (~p&~q) | ; t--43 |
(q => p) (p&q) / ((p&q) + (~p&q)) | ; t--46 |
(p xor q) (p&~q) + (~p&q) | ; t--40 |
(p <-> q) (p&q) + (~p&~q) | ; t--41 |
(p <=> q) (p&q) / ((p&q) + (p&~q) + (~p&q)) | ; t--47 |
| | |
(ad-bc) (p&q)(~p&~q) - (p&~q)(~p&q) | ; t--48 |
A(p,q) (p&q)(~p&~q) - (p&~q)(~p&q) | ; t--49 |
Alternatives
(p -> q) (~pvq) | ; t--56 |
(p -> q) ~(p&~q) | ; t--57 |
(p <-> q) ~(p xor q) | ; t--58 |
| | |
(p => q) (p&q) / p | ; t--59 |
(p <=> q) (p&q) / (pvq) | ; t--60 |
NegationsFunction f(p,p)Function f(p,~p)Function f(p,0)Function f(p,1)Correlation factorFunction f(p,q,(ad-bc))
a pq + (ad-bc) | ; t--105 |
b p - pq - (ad-bc) | ; t--106 |
c q - pq - (ad-bc) | ; t--107 |
d 1 - p - q + pq + (ad-bc) | ; t--108 |
| | |
(pvq) p + q - pq - (ad-bc) | ; t--109 |
(p -> q) 1 - p + pq + (ad-bc) | ; t--110 |
(p => q) (pq - (ad-bc)) / p | ; t--111 |
(q -> p) 1 - q + pq + (ad-bc) | ; t--112 |
(q => p) (pq - (ad-bc)) / q | ; t--113 |
(p xor q) p + q - 2pq - 2(ad-bc) | ; t--114 |
(p <-> q) 1 - p - q + 2pq +2(ad-bc) | ; t--115 |
(p <=> q) (pq - (ad-bc)) / (p + q - pq - (ad-bc)) | ; t--116 |
Function f(p,q,p&q)
(pvq) p + q - (p&q) | ; t--61 |
(p -> q) 1 - p + (p&q) | ; t--62 |
(p => q) (p&q) / p | ; t--59 |
(q -> p) 1 - q + (p&q) | ; t--63 |
(q => p) (p&q) / q | ; t--64 |
(p xor q) p + q - 2(p&q) | ; t--65 |
(p <-> q) 1 - p - q + 2(p&q) | ; t--66 |
(p <=> q) (p&q) / (p + q - (p&q) | ; t--67 |
Function f(p,q,pvq)
(p&q) p + q - (pvq) | ; t--68 |
Modus ponens f(p,p -> q) , f(p,p => q)
(p&(p -> q)) (p&q) | ; t--125 |
(p&(p => q)) no rules available at null order level | ; t--126 |
p(p => q) (p&q) | ; t--127 |
Modus tollens f(~q,p -> q) , f(~q,p => q)
(~q&(p -> q)) (~p&~q) | ; t--128 |
(~q&(p => q)) no rules available at null order level | ; t--129 |
Counter positionParadox of material implication
|